Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Med Chem ; 18(2): 151-169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33593264

RESUMEN

BACKGROUND: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used in an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. OBJECTIVES: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "inhouse" library of both AGH and TSC derivatives and their structurally-related compounds. METHODS: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. RESULTS: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 µM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. CONCLUSION: The promising antileishmanial activity of three AGH's and three TSC's was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 µM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are in progress, which will help choose the best hits for in vivo experiments.


Asunto(s)
Leishmania infantum , Tiosemicarbazonas , Guanidinas , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología
3.
Curr Pharm Des ; 26(15): 1682-1692, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32286939

RESUMEN

Major research in Alzheimer's disease (AD) related to disease-modifying agents is concentrated on pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging use in in vivo and clinical trials support their potential therapeutic use in AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Humanos , Ovillos Neurofibrilares , Agregado de Proteínas
4.
Neurochem Int ; 134: 104647, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31877349

RESUMEN

BACKGROUND: Neonatal sepsis is defined as a systemic inflammatory response caused by a suspected or proven infection, occurring in the first month of life, and remains one of the main causes of morbidity and mortality in newborn and preterm infants. Frequently, survivors of neonatal sepsis have serious long-term cognitive impairment and adverse neurologic outcomes. There is currently no specific drug treatment for sepsis. Indole-3-guanylhydrazone hydrochloride (LQM01) is an aminoguanidine derivative that has been described as an anti-inflammatory, antihypertensive and antioxidant with potential applicability in inflammatory diseases. METHODS: We used a LPS-challenged neonatal sepsis rodent model to investigate the effect of LQM01 on cognitive impairment and anxiety-like behavior in sepsis mice survivors, and examined the possible molecular mechanisms involved. RESULTS: It was found that LQM01 exposure during the neonatal period reduces anxiety-like behavior and cognitive impairment caused by lipopolysaccharides (LPS) in adult life. Additionally, treatment with LQM01 decreased pro-inflammatory cytokine levels and reduced NFκB, COX-2, MAPK and microglia activation in hippocampus of neonatal mice. Furthermore, LQM01 was also able to prevent oxidative damage in hippocampus of neonatal mice and preserve brain barrier integrity. CONCLUSIONS: LQM01 attenuated inflammatory reactions in an LPS-challenged neonatal sepsis mice model through the MAPK and NFκB signaling pathways and microglia activation suppression. All these findings are associated with mitigated cognitive impairment in 70 days-old LQM01 treated-mice. GENERAL SIGNIFICANCE: We revealed the effect of LQM01 as an anti-septic agent, and the role of crucial molecular pathways in mitigating the potential damage caused by neonatal sepsis.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Guanidina/análogos & derivados , Indoles/farmacología , Inflamación/tratamiento farmacológico , Sepsis Neonatal/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Guanidina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Sepsis Neonatal/inducido químicamente , Sepsis Neonatal/metabolismo
5.
J Photochem Photobiol B ; 189: 165-175, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30366283

RESUMEN

Acridines are considered an important class of compounds due to their wide variety of biological activities. In this work, we synthesized four acridine derivatives (1-4) and evaluated their biological activity against the Plasmodium falciparum W2 line, as well as studied the interaction with ctDNA and HSA using spectroscopic techniques and molecular docking. The acridine derivative 2 (IC50 = 0.90 ±â€¯0.08 µM) was more effective against P. falciparum than primaquine (IC50 = 1.70 ±â€¯0.10 µM) and similar to amsacrine (IC50 = 0.80 ±â€¯0.10 µM). In the fluorescence and UV-vis assays, it was verified that the acridine derivatives interact with ctDNA and HSA leading to a non-fluorescent supramolecular complex formation. The non-covalent binding constants ranged from 2.09 to 7.76 × 103 M-1, indicating moderate interaction with ctDNA. Through experiments with KI, fluorescence contact energy transfer and competition assays were possible to characterize the main non-covalent binding mode of the acridines evaluated with ctDNA as intercalation. The binding constants obtained showed a high linear correlation with the IC50 values against the antimalarial activity, suggesting that DNA may be the main biological target of these molecules. Finally, HSA interaction studies were performed and all evaluated compounds bind to the site II of the protein. The less active compounds (1 and 3) presented the highest affinity to HSA, indicating that the interaction with carrier protein can affect the (bio)availability of these compounds to the biological target.


Asunto(s)
Acridinas/síntesis química , Antimaláricos/farmacología , ADN/metabolismo , Albúmina Sérica Humana/metabolismo , Acridinas/farmacología , Sitios de Unión , Humanos , Sustancias Intercalantes/farmacología , Unión Proteica , Relación Estructura-Actividad
6.
J Adv Res ; 9: 51-61, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30046486

RESUMEN

Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (•O2-). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to •O2- scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb) and GI50 for several human cancer cell was observed.

7.
Chem Biol Interact ; 286: 1-10, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29499192

RESUMEN

BACKGROUND: Indole-3-guanylhydrazone hydrochloride (LQM01) is a new derivative of aminoguanidine hydrochloride, an aromatic aminoguanidine. METHODS: Mice were treated with LQM01 (5, 10, 25 or 50 mg/kg, i.p.), vehicle (0.9% saline i.p.) or a standard drug. The mice were subjected to carrageenan-induced pleurisy, abdominal writhing induced by acetic acid, the formalin test and the hot-plate test. The model of non-inflammatory chronic muscle pain induced by saline acid was also used. Mice from the chronic protocol were assessed for withdrawal threshold, muscle strength and motor coordination. LQM01 or vehicle treated mice were evaluated for Fos protein. RESULTS: LQM01 inhibits TNF-α and IL-1ß production, as well as leukocyte recruitment during inflammation process. The level of IL-10 in LQM01-treated mice increased in pleural fluid. In addition, LQM01 decreased the nociceptive behavior in the acetic acid induced writhing test, the formalin test (both phases) and increased latency time on the hot-plate. LQM01 treatment also decreased mechanical hyperalgesia in mice with chronic muscle pain, with no changes in muscle strength and motor coordination. LQM01 reduced the number of Fos positive cells in the superficial dorsal horn. This compound exhibited antioxidant properties in in vitro assays. CONCLUSIONS: LQM01 has an outstanding anti-inflammatory and analgesic profile, probably mediated through a reduction in proinflammatory cytokines release, increase in IL-10 production and reduction in neuron activity in the dorsal horn of the spinal cord in mice. GENERAL SIGNIFICANCE: Beneficial effects of LQM01 suggest that it has some important clinical features and can play a role in the management of 'dysfunctional pain' and inflammatory diseases.


Asunto(s)
Analgésicos/química , Antiinflamatorios/química , Guanidinas/química , Interleucina-10/análisis , Interleucina-1beta/análisis , Factor de Necrosis Tumoral alfa/análisis , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Conducta Animal/efectos de los fármacos , Carragenina/toxicidad , Guanidina/análogos & derivados , Indoles , Leucocitos/citología , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Masculino , Ratones , Microscopía Fluorescente , Actividad Motora/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Pleuresia/inducido químicamente , Pleuresia/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología
8.
J Photochem Photobiol B ; 179: 156-166, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29413989

RESUMEN

The cytotoxic activity of the pimarane diterpene annonalide (1) and nine of its semisynthetic derivatives (2-10) was investigated against the human tumor cell lines HL-60 (leukemia), PC-3 (prostate adenocarcinoma), HepG2 (hepatocellular carcinoma), SF-295 (glioblastoma) and HCT-116 (colon cancer), and normal mouse fibroblast (L929) cells. The preparation of 2-10 involved derivatization of the side chain of 1 at C-13. Except for 2, all derivatives are being reported for the first time. Most of the tested compounds presented IC50s below 4.0 µM, being considered potential antitumor agents. The structures of all new compounds were elucidated by spectroscopic analyses including 2D NMR and HRMS. Additionally, the interaction of annonalide (1) with ctDNA was evaluated using spectroscopic techniques, and the formation of a supramolecular complex with the macromolecule was confirmed. Competition assays with fluorescent probes (Hoechst and ethidium bromide) and theoretical studies confirmed that 1 interacts preferentially via DNA intercalation with stoichiometric ratio of 1:1 (1:ctDNA). The ΔG value was calculated as -28.24 kJ mol-1, and indicated that the interaction process occurs spontaneously. Docking studies revealed that van der Walls is the most important interaction in 1-DNA and EB-DNA complexes, and that both ligands (1 and EB) interact with the same DNA residues (DA6, DA17 and DT19).


Asunto(s)
Ciclooctanos/química , ADN/química , Cetonas/química , Animales , Sitios de Unión , Bovinos , Línea Celular Tumoral , Supervivencia Celular , Ciclooctanos/síntesis química , Ciclooctanos/toxicidad , ADN/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Cetonas/síntesis química , Cetonas/toxicidad , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Espectrofotometría , Electricidad Estática , Termodinámica , Temperatura de Transición
9.
Bioorg Med Chem ; 25(16): 4219-4244, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28689975

RESUMEN

Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
10.
Acta Pharm ; 66(1): 129-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26959549

RESUMEN

Guanylhydrazones have shown promising antitumor activity in preclinical tumor models in several studies. In this study, we aimed at evaluating the cytotoxic effect of a series of synthetic guanylhydrazones. Different human tumor cell lines, by including HCT-8 (colon carcinoma), MDA-MB-435 (melanoma) and SF-295 (glioblastoma) were continuous exposed to guanylhydrazone derivatives for 72 hours and growth inhibition of tumor cell lines and macrophages J774 was measured using tetrazolium salt (MTT) assay. Compounds 7, 11, 16 and 17 showed strong cytotoxic activity with IC50 values lower than 10 µmol L(-1) against four tumor cell lines. Among them, 7 was less toxic to non-tumor cells. Finally, obtained data suggest that guanylhydrazones may be regarded as potential lead compounds for the design of novel anticancer agents.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Hidrazonas/química , Hidrazonas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...